Descargar gratis Técnicas Estadísticas Predictivas Con Ibm Spss de César Pérez en DOC - PDF - CSV - LIT - EPUB - TXT

Bajar gratis el libro completo “Técnicas Estadísticas Predictivas Con Ibm Spss” de César Pérez publicado en el año 2014. Lectura complementaria recomendada para estudiantes de Estadística.

  • Editorial: GARCETA.
  • Formatos de descarga disponibles: DOC – PDF – CSV – LIT – EPUB – TXT. (RAR – ZIP – AZW4 – DMG – BZ2).
  • Páginas: 474.
  • ISBN: 9788415452874.
  • Incluye un resumen de 42 páginas, y las preguntas de prueba más frecuentes.
  • Publicado el: 21/6/2014
  • Género/Colección: Educativo.
  • Descripción: Las técnicas estadísticas predictivas, base de la econometría, especifican el modelo para los datos de acuerdo a un conocimiento teórico previo recogido en la teoría económica, médica, biológica, farmacológica, epidemiológica, ingeniería o de la materia de la que se trate. Una vez identificado el modelo teórico, se procede a su estimación debiendo ser posteriormente contrastado antes de aceptarlo como válido. Finalmente ya puede utilizarse el modelo para predecir. Tenemos así las cuatro fases típicas de la modelización predictiva: identificación, estimación, diagnosis y predicción. Podemos incluir entre las técnicas predictivas todos los tipos de regresión lineal y no lineal, series temporales, análisis de la varianza y la covarianza, modelos de diseño de experimentos, análisis discriminante, árboles de decisión y redes neuronales. Pero, tanto los árboles de decisión, como las redes neuronales y el análisis discriminante son a su vez técnicas de clasificación que pueden extraer perfiles de comportamiento o clases, siendo el objetivo construir un modelo que permita clasificar cualquier nuevo dato. Los árboles de decisión permiten clasificar los datos en grupos basados en los valores de las variables. El mecanismo de base consiste en elegir un atributo como raíz y desarrollar el árbol según las variables más significativas. De esta forma se puede realizar en cierto modo perfilado y segmentación de datos. Este libro desarrolla prácticamente todas las técnicas estadísticas predictivas ilustrándolas con ejemplos prácticos resueltos con el software IBM SPSS. Al final de cada capítulo se presentan una serie de ejercicios secuenciados en orden de dificultan que permiten afianzar los conocimientos adquiridos. CONTENIDO TÉCNICAS DE DEPENDENCIA Y MODELOS PREDICTIVOS 1.1 TÉCNICAS DE ANÁLISIS DE DATOS 1.2 TÉCNICAS ESTADÍSTICAS PREDICTIVAS. TÉCNICAS DE DEPENDENCIA Y MODELIZACIÓN MODELO DE REGRESIÓN LINEAL MÚLTIPLE 2.1 MODELO DE REGRESIÓN LINEAL MÚLTIPLE 2.2 ESTIMACIÓN DEL MODELO LINEAL DE REGRESIÓN MÚLTIPLE 2.3 ESTIMACIÓN DEL MODELO, CONTRASTES E INTERVALOS DE CONFIANZA A TRAVÉS DEL CÁLCULO MATRICIAL 2.4 ANÁLISIS DE LA VARIANZA 2.5 PREDICCIONES 2.6 ANÁLISIS DE LOS RESIDUOS 2.7 EL PROBLEMA DE LA AUTOCORRELACIÓN Y SU DETECCIÓN 2.8 SOLUCIONES PARA LA AUTOCORRELACIÓN 2.9 EL PROBLEMA DE LA HETEROSCEDASTICIDAD Y SU DETECCIÓN 2.10 SOLUCIONES PARA LA HETEROSCEDASTICIDAD 2.11 EL PROBLEMA DE LA MULTICOLINEALIDAD Y SU DETECCIÓN 2.12 SOLUCIONES PARA LA MULTICOLINEALIDAD 2.13 SPSS Y EL MODELO DE REGRESIÓN MÚLTIPLE 2.14 SPSS Y MODELOS CON REGRESORES ESTOCÁSTICOS. VARIABLES INSTRUMENTALES Y M.C. EN DOS FASES 2.15 SPSS Y MODELOS CON HETEROCEDASTICIDAD. MÍNIMOS CUADRADOS PONDERADOS 2.16 SPSS Y LA REGRESIÓN CON VARIABLE RESPUESTA ORDINAL MODELOS PREDICTIVOS NO LINEALES Y CORRELACIÓN CANÓNICA 3.1 INTRODUCCIÓN A LOS MODELOS NO LINEALES 3.2 MÍNIMOS CUADRADOS NO LINEALES 3.3 SPSS Y LA ESTIMACIÓN NO LINEAL 3.4 ANÁLISIS DE LA CORRELACIÓN CANÓNICA 3.5 SPSS Y ANÁLISIS DE LA CORRELACIÓN CANÓNICA MODELOS PREDICTIVOS DE ELECCIÓN DISCRETA BINARIA Y MÚLTIPLE: LOGIT Y PROBIT 4.1 MODELOS DE ELECCIÓN DISCRETA 4.2 MODELOS DE ELECCIÓN DISCRETA BINARIA 4.3 SPSS Y LA REGRESIÓN LOGÍSTICA BINARIA 4.4 SPSS Y EL MODELO PROBIT 4.5 MODELOS DE ELECCIÓN MÚLTIPLE 4.6 SPSS Y EL MODELO LOGIT MULTINOMIAL MODELOS PREDICTIVOS DE SERIES TEMPORALES: SUAVIZADO, PREDICCIÓN Y METODOLOGÍA ARIMA 5.1 INTRODUCCIÓN A LAS SERIES TEMPORALES 5.2 TENDENCIA DE UNA SERIE TEMPORAL 5.3 SPSS Y LA TENDENCIA DE LAS SERIES TEMPORALES 5.4 VARIACIONES ESTACIONALES EN UNA SERIE TEMPORAL 5.5 SPSS Y LAS VARIACIONES ESTACIONALES 5.6 VARIACIONES CÍCLICAS EN UNA SERIE TEMPORAL 5.7 SPSS Y LAS VARIACIONES CÍCLICAS Y ESTACIONALES: PERIODOGRAMA Y DENSIDAD ESPECTRAL 5.8 METODOLOGÍA DE BOX-JENKINS 5.9 SPSS Y LA METODOLOGÍA DE BOX-JENKINS MODELOS AUTOPROYECTIVOS DETERMINISTAS DE PREDICCIÓN 6.1 PREDICCIÓN Y SUAVIZADO DE SERIES TEMPORALES 6.2 MÉTODOS AUTOPROYECTIVOS DETERMINISTAS DE PREDICCIÓN 6.3 PREDICCIONES INCONDICIONALES DETERMINISTAS CON EL MODELIZADOR DE SPSS. SUAVIZADO ANÁLISIS DE LA INTERVENCIÓN Y MODELOS DE LA FUNCIÓN DE TRANSFERENCIA 7.1 MODELOS DE INTERVENCIÓN 7.2 IDENTIFICACIÓN DE MODELOS DE INTERVENCIÓN 7.3 VALORES ATÍPICOS (OUTLIERS) 7.4 MODELO UNIVARIANTE DE LA FUNCIÓN DE TRANSFERENCIA 7.5 SPSS Y LOS MODELOS DE INTERVENCIÓN 7.6 SPSS Y LOS MODELOS DE LA FUNCIÓN DE TRANSFERENCIA MODELOS ANOVA, ANCOVA, MANOVA, MANCOVA Y GLM 8.1 ANÁLISIS DE LA VARIANZA SIMPLE ANOVA 8.2 ANÁLISIS DE LA COVARIANZA SIMPLE ANCOVA 8.3 MODELO DE REGRESIÓN MÚLTIPLE LINEAL GENERAL (GLM) 8.4 MODELOS LINEALES MIXTOS 8.5 ANOVA DE UN FACTOR CON SPSS 8.6 REGRESIÓN, ANOVA Y ANCOVA UNIVARIANTES DE UNO Y VARIOS FACTORES CON MLG EN SPSS 8.7 COMPONENTES DE LA VARIANZA EN MODELOS ANOVA Y ANCOVA DE EFECTOS MIXTOS CON SPSS 8.8 ANOVA Y ANCOVA CON MEDIDAS REPETIDAS EN SPSS 8.9 MODELOS LINEALES MIXTOS EN SPSS 8.10 ANÁLISIS MULTIVARIANTE DE LA VARIANZA (MANOVA) Y DE LA COVARIANZA (MANCOVA) 8.11 SPSS Y LOS MODELOS MANOVA Y MANCOVA MULTIVARIANTES DE UNO Y VARIOS FACTORES MODELOS PREDICTIVOS DE ANÁLISIS DISCRIMINANTE 9.1 INTRODUCCIÓN AL ANÁLISIS DISCRIMINANTE 9.2 HIPÓTESIS EN EL MODELO DISCRIMINANTE 9.3 ESTIMACIÓN DEL MODELO DISCRIMINANTE 9.4 INTERPRETACIÓN DE LA FUNCIÓN DISCRIMINANTE 9.5 CLASIFICACIÓN DE LOS INDIVIDUOS 9.6 ANÁLISIS DISCRIMINANTE CANÓNICO 9.7 IBM SPSS Y EL ANÁLISIS DISCRIMINANTE MODELOS PREDICTIVOS DE DATOS DE PANEL: MODELOS MIXTOS 10.1 MODELOS LINEALES MIXTOS 10.2 INTRODUCCIÓN A LOS DATOS DE PANEL: ESTRUCTURAS DE DATOS 10.3 MODELOS ECONOMÉTRICOS CON DATOS DE PANEL 10.4 MODELOS DE PANEL CON COEFICIENTES CONSTANTES 10.5 MODELOS DE PANEL DE EFECTOS FIJOS 10.6 MODELOS DE PANEL DE EFECTOS ALEATORIOS 10.7 MODELOS DINÁMICOS CON DATOS DE PANEL 10.8 EL PROCEDIMIENTO MODELOS LINEALES MIXTOS DE SPSS ÁRBOLES DE DECISIÓN 11.1 ÁRBOLES DE DECISIÓN 11.2 CARACTERÍSTICAS DE LOS ÁRBOLES DE DECISIÓN 11.3 TIPOS DE ÁRBOLES DE DECISIÓN 11.3.1 Árboles CHAID 11.3.2 Árboles CART 11.3.3 Árboles QUEST 11.4 IBM SPSS Y LOS ÁRBOLES DE DECISIÓN MODELOS DE REDES NEURONALES 12.1 DESCRIPCIÓN DE UNA RED NEURONAL 12.1.1 Definición 12.1.2 Función de salida y funciones de transferencia o activación 12.2 REDES NEURONALES Y AJUSTE DE MODELOS DE REGRESIÓN 12.3 APRENDIZAJE EN LAS REDES NEURONALES 12.4 FUNCIONAMIENTO DE UNA RED NEURONAL 12.5 EL ALGORITMO DE APRENDIZAJE RETROPROPAGACIÓN (BACK-PROPAGATION) 12.6 ANÁLISIS DISCRIMINANTE A TRAVÉS DEL PERCEPTRÓN 12.7 ANÁLISIS DE SERIES TEMPORALES MEDIANTE REDES NEURONALES 12.8 ANÁLISIS DE COMPONENTES PRINCIPALES CON REDES NEURONALES 12.9 CLUSTERING MEDIANTE REDES NEURONALES 12.10 SPSS Y LAS REDES NEURONALES
  • Idioma: Español.
  • Servidores de descarga: Mediafire – MEGA – Google Drive – FreakShare – Dropbox.
  • Valoración: 4.13, con 200 votos.
Calificar Libro

Subido por: Elena Pastor, el día 29/8/2016 con una puntuación de 3.2 (Máx 5). En LecturasComplementarias tenemos muchos libros para descargar. Clic para iniciar la descarga del archivo Técnicas Estadísticas Predictivas Con Ibm Spss escrito por César Pérez.

Descargar Gratis