Descargar gratis Econometría Básica de César Pérez en EPUB - DOC - PDF - TXT - MobiPocket - PDB

Bajar gratis el libro completo “Econometría Básica” de César Pérez publicado en el año 2012. Lectura complementaria recomendada para estudiantes de Administración de empresas.

  • Editorial: GARCETA.
  • Formatos de descarga disponibles: EPUB – DOC – PDF – TXT – MobiPocket – PDB. (BZ2 – ZIP – RAR).
  • Páginas: 630.
  • ISBN: 9788415452027.
  • Incluye un resumen de 51 páginas, y las preguntas de prueba más frecuentes.
  • Publicado el: 12/5/2012
  • Género/Colección: Educativo.
  • Descripción: El objetivo de este libro es la presentación de las técnicas econométricas básicas y su tratamiento con las herramientas más adecuadas de cálculo automatizado. Se utilizan los paquetes de software EVIEWS, STATA, SAS y SPSS para abordar de modo sencillo el trabajo econométrico. El primer bloque de contenido se ocupa del modelo lineal de regresión múltiple y de toda su problemática, incluyendo herramientas para la detección y tratamiento de la autocorrelación, heteroscedasticidad, multicolinealidad, normalidad residual, linealidad, observaciones influyentes, errores de especificación, exogeneidad y regresores estocásticos. Un segundo bloque trata los modelos de elección discreta, recuento, censurados, truncados y de selección muestral, haciendo hincapié en los modelos Logit, Probit, Tobit, Poisson, binomial negativa y corrección del sesgo de selección mediante la estimación de Heckman. El tercer bloque aborda el análisis univariante de series temporales a través de la metodología Box Jenkins para modelos ARIMA, el tratamiento de los modelos de intervención y los modelos univariantes de la función de transferencia. El último bloque se ocupa de los modelos del análisis de la varianza y la covarianza, el modelo lineal general y los modelos mixtos. Los capítulos se inician con la exposición de los conceptos y notas teóricas adecuadas, para resolver a continuación una variedad de ejercicios que cubran los conceptos expuestos. Se trata de recopilar la mayor parte de los conceptos econométricos e ilustrarlos con la práctica a través de las herramientas de software adecuadas. CONTENIDO Capítulo 1. Modelo lineal de regresión múltiple. Hipótesis, Estimación, inferencia y predicción Modelo lineal de regresión múltiple Hipótesis en el modelo lineal Estimación del modelo lineal por mínimos cuadrados ordinarios MCO Estimación del modelo lineal por máxima verosimilitud Inferencia en el modelo por mínimos cuadrados ordinarios MCO Predicciones Selección de modelos de regresión Análisis de los residuos Modelo lineal con restricciones Regresión con variables cualitativas: variables ficticias Capítulo 2. Modelo lineal de regresión múltiple. Herramientas de software EVIEWS y el trabajo básico con le modelo de regresión múltiple SPSS y el trabajo básico con el modelo de regresión múltiple SAS y el trabajo básico con el modelo de regresión múltiple STATA y el trabajo básico con el modelo de regresión múltiple STATA y el trabajo básico con el modelo de regresión múltiple a través de menús Capítulo 3. Autocorrelación, heteroscedasticidad, multicolinealidad, no linealidad y normalidad Modelos con autocorrelación Detección de la autocorrelación Soluciones para la autocorrelación Modelos con heteroscedasticidad Detección de la heteroscedasticidad Soluciones para la heteroscedasticidad Multicolinealidad Normalidad residual No linealidad y errores de especificación Exogeneidad y regresores estocásticos Análisis de la influencia Capítulo 4. Herramientas para tratar autocorrelación, Heteroscedasticidad y otros problemas Tratamiento de la autocorrelación y heteroscedasticidad con Eviews Eviews y los modelos ARCH Y GARCH Endogeneidad, variables instrumentales y mínimos cuadrados en dos etapas con Eviews Errores de especificación con Eviews. Variables omitidas y redundantes Errores de especificación en la forma funcional con Eviews SPSS y modelos con regresores estocásticos. Variables instrumentales y M.C. en dos fases SPSS y modelos con heteroscedasticidad y multicolinealidad. Mínimos cuadrados ponderados SAS y la multicolinealidad, autocorrelación, heteroscedasticidad, valores influyentes y errores de especificación SAS y los modelos ARCH Y GARCH STATA y la multicolinealidad, autocorrelación, heteroscedasticidad, errores de especificación y observaciones influyentes STATA y la multicolinealidad, autocorrelación, heteroscedasticidad, errores de especificación y observaciones influyentes a través de menús Capítulo 5. Modelos Logit, Probit, Tobit, truncados, recuento, censurados y de selección muestral. Herramientas Modelos variable dependiente limitada Modelos de elección discreta Modelos de elección discreta binaria Modelos de elección múltiple Modelos Logit y Probit otdenados Modelo de datos de recuento Modelos censurados. El modelo Tobit Selección muestral. Modelos truncados Corrección de la selección muestral. Estimación bietápica de Heckman o Heckit SPSS y la regresión logística binaria SPSS y el modelo Probit SPSS y el modelo Logit multinomial SAS y la regresión logística. Proc LOGISTIC SAS y el modelo Probit. Procedimiento PROBIT SAS y el modelo Tobit de regresión censurada. Procedimiento LIFEREG Modelos de variable dependiente limitada con Eviews: MLP, Logit y Probit Modelos de recuento con Eviews: Poisson, binomial negativa y exponencial Modelos Tobit censurado y truncado con Eviews. Método de Heckman y Ratio de Mills Modelos de variable dependiente limitada con STATA: Logit y Probit Modelos Tobit censurado y truncado con STATA. Modelo de Poisson con STATA Capítulo 6. Análisis univariante de series temporales. Modelos ARIMA, intervención y función de transferencia Series temporales Descomposición clásica de una serie temporal Predicción y suavizado de series temporales, métodos autoproyectivos deterministas Predicciones incondicionales estocásticas Modelos ARIMA: Primeros conceptos Modelos autorregresivos AR(p) Modelos de medias móviles MA(q) Modelos ARMA(p,q) Modelos ARIMA(p,d,q) La metodología de Box Jenkins en modelos ARIMA Series temporales estacionales. Detección de la estacionalidad Modelos estacionales puros Modelos estacionales generales Modelos de intervención Identificación de modelos de intervención Valores atípicos (Outliers) Modelo univariante de la función de transferencia Identificación, estimación y validación del modelo de la función de transferencia Etapas de la identificación, estimación y validación del modelo de la función de transferencia Modelos de la función de transferencia estacionales Capítulo 7. Herramientas para el análisis univariante de series temporales Eviews y la identificación, estimación, validación y predicción de modelos ARIMA(p,d,q)(P,D,Q)s Eviews y los modelos ARIMA y de intervención Eviews y los métodos autoproyectivos deterministas: alisados exponenciales y de Holt_Winters SPSS y la identificación, estimación, diagnosis y predicción de modelos ARIMA(p,d,q)(P,D,Q)s Predicciones incondicionales deterministas con el modelizador de SPSS. Suavizado SPSS y los modelos ARIMA con intervención SAS y la identificación, estimación, validación y predicción de modelos ARIMA(p,d,q)(P,D,Q)s SAS y los modelos ARIMA de intervención y de función de transferencia STATA y los modelos ARIMA(p,d,q)(P,D,Q)s Capítulo 8. Modelos del análisis de la varianza y la covarianza. Modelo Lineal General y modelos mixtos Modelos del análisis de la varianza y la covarianza Modelos ANOVA de la varianza simple Modelos ANCOVA de la covarianza simple Análisis multivariante de la varianza (MANOVA) Análisis multivariante de la covarianza (MANCOVA) Modelo Lineal General (GLM) Modelos lineales mixtos SPSS y los modelos ANOVA y ANCOVA univariantes de uno y varios factores SPSS y la estimación de las componentes de la varianza en modelos ANCOVA de efectos mixtos SPSS y los modelos MANOVA y MANCOVA multivariantes de uno y varios factores SPSS y los modelos lineales mixtos Análisis de la varianza y la covarianza con SAS. Procedimiento GLM Componentes de la varianza en SAS. Procedimiento VARCOMP SAS y los modelos mixtos. PROC MIXED STATA y el análisis de la varianza-covarianza. El modelo GLM y los modelos mixtos
  • Idioma: Español.
  • Servidores de descarga: MEGA – Google Drive – FileServe – Mediafire – SendSpace – Uploaded – FileHosting – Dropbox.
  • Valoración: 4.75, con 54 votos.
Calificar Libro

Subido por: Cristian Muñoz López, el día 5/9/2016 con una puntuación de 4.62 (Máx 5). Haz click en el link para empezar a descargar o leer en linea free el libro Econometría Básica escrito por César Pérez.

Descargar Gratis